D3.2_OAM chiral writing and detection
ثبت نشده
چکیده
In theory, there are analogous transformations of light’s spin and orbital angular momentum [Allen and Padgett, J. Mod. Opt. 54, 487 (2007)]; however, none have been observed experimentally yet. In particular, it is unknown if there exists for the orbital angular momentum of light an effect analogous to the spin angular momentum-based optical rotation; this would manifest itself as a rotation of the corresponding Hermite-Gauss mode. Here we report an experimental search for this effect in a cholesteric liquid crystal polymer, using strongly focussed, spin-orbit coupled light. We find that the relative phase velocities of the orbital modes constituting the Hermite-Gauss mode agree to within 10−5. © 2011 Optical Society of America OCIS codes: (160.1585) Chiral media; (030.4070) Modes; (350.4238) Nanophotonics and photonic crystals. References and links 1. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). 2. L. Allen and M. Padgett, “Equivalent geometric transformations for spin and orbital angular momentum of light,” J. Mod. Opt. 54, 487–491 (2007). 3. G. Nienhuis, J. P. Woerdman, and I. Kuščer, “Magnetic and mechanical faraday effects,” Phys. Rev. A 46, 7079– 7092 (1992). 4. M. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Öhberg, and S. M. Barnett, “Polarization and image rotation induced by a rotating dielectric rod: an optical angular momentum interpretation,” Opt. Lett. 31, 2205– 2207 (2006). 5. J. Leach, A. J. Wright, J. B. Götte, J. M. Girkin, L. Allen, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “‘aether drag’ and moving images,” Phys. Rev. Lett. 100, 153902 (2008). 6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). 7. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997). 8. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). 9. S. J. van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields,” J. Mod. Opt. 41, 963–977 (1994). 10. M. Babiker, C. R. Bennett, D. L. Andrews, and L. C. Dávila Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89, 143601 (2002). 11. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B 4, S66 (2002). 12. R. Jáuregui, “Rotational effects of twisted light on atoms beyond the paraxial approximation,” Phys. Rev. A 70, 033415 (2004). #145482 $15.00 USD Received 13 Apr 2011; revised 27 May 2011; accepted 2 Jun 2011; published 21 Jun 2011 (C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS 12978 13. D. L. Andrews, L. C. Dávila Romero, and M. Babiker, “On optical vortex interactions with chiral matter,” Opt. Commun. 237, 133–139 (2004). 14. A. Alexandrescu, D. Cojoc, and E. D. Fabrizio, “Mechanism of angular momentum exchange between molecules and laguerre-gaussian beams,” Phys. Rev. Lett. 96, 243001 (2006). 15. R. Grinter, “Photon angular momentum: selection rules and multipolar transition moments,” J. Phys. B 41, 095001 (2008). 16. V. Klimov, D. Bloch, M. Ducloy, and J. R. R. Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009). 17. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: an experimental investigation,” Phys. Rev. A 71, 055401 (2005). 18. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97, 170406 (2006). 19. D. Sanvitto, F. M. Marchetti, M. H. Szymanska, G. Tosi, M. Baudisch, F. P. Laussy, D. N. Krizhanovskii, M. S. Skolnick, L. Marrucci, A. Lemaitre, J. Bloch, C. Tejedor, and L. Vina, “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527–533 (2010). 20. A. Picón, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Photoionization with orbital angular momentum beams,” Opt. Express 18, 3660–3671 (2010). 21. I. Khoo, Liquid Crystals, Wiley series in pure and applied optics (Wiley-Interscience, 2007). 22. W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191–1198 (1995). 23. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1975), Vol. 8. 24. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). 25. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998). 26. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003). 27. D. J. Broer and I. Heynderickx, “Three-dimensionally ordered polymer networks with a helicoidal structure,” Macromolecules 23, 2474–2477 (1990). 28. R. A. M. Hikmet, J. Lub, and D. J. Broer, “Anisotropic networks formed by photopolymerization of liquidcrystalline molecules,” Adv. Mater. 3, 392–394 (1991). 29. D. W. Berreman and T. J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films,” Phys. Rev. Lett. 25, 577–581 (1970). 30. S. M. Barnett and L. Allen, “Orbital angular momentum and nonparaxial light beams,” Opt. Commun. 110, 670–678 (1994). 31. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused gaussian beam,” J. Opt. A 10, 115005 (2008). 32. J. Pastrnak and K. Vedam, “Optical anisotropy of silicon single crystals,” Phys. Rev. B 3, 2567–2571 (1971). 33. A. G. Serebryakov and F. Bociort, “Spatial dispersion of crystals as a critical problem for deep uv lithography,” J. Opt. Technol. 70, 566–569 (2003). 34. J. W. R. Tabosa and D. V. Petrov, “Optical pumping of orbital angular momentum of light in cold cesium atoms,” Phys. Rev. Lett. 83, 4967–4970 (1999).
منابع مشابه
L- and D-cysteine functionalized CdS quantum dots as nanosensors for detection of L-morphine and D-methamphetamine
A new method in differentiation of chiral molecules is reported based on the fluorescence quenching of functionalized CdS quantum dots (CdS-QDs) as nanosensor by differing in the chirality of functionalization species. The chemically functionalized CdS-QDs with strong yellow emission were prepared using chiral L-cysteine (L-Cyst) and D-cysteine (D-Cyst) molecules. Then, the functionalized CdS-Q...
متن کاملElectrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode
The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...
متن کاملImprovement of Electrophoretic Enantioseparation of Amlodipine by Polybrene
In chiral and non-chiral electrophoretic resolution of basic drugs, adsorption of analytes to negatively charged capillary wall could lead to poor repeatability of migration time and peak area. In addition, chiral resolutions of basic drugs are commonly performed in low pH buffers. Therefore, longer analysis time due to suppression of electroosmotic flow (EOF) is another dilemma. In this wor...
متن کاملImprovement of Electrophoretic Enantioseparation of Amlodipine by Polybrene
In chiral and non-chiral electrophoretic resolution of basic drugs, adsorption of analytes to negatively charged capillary wall could lead to poor repeatability of migration time and peak area. In addition, chiral resolutions of basic drugs are commonly performed in low pH buffers. Therefore, longer analysis time due to suppression of electroosmotic flow (EOF) is another dilemma. In this wor...
متن کاملCyclodextrine Screening for the Chiral Separation of Carvedilol by Capillary Electrophoresis
Carvedilol is administered as a racemic mixture of the R(+)- and S(-)-enantiomers, although it was demonstrated that the two enantiomers exhibit different pharmacological effects and stereoselective pharmacokinetics. The aim of this study was the evaluation of several native and derivatized cyclodextrines as chiral selectors for the separation of carvedilol enantiomers. Stereoselective interact...
متن کاملCyclodextrine Screening for the Chiral Separation of Carvedilol by Capillary Electrophoresis
Carvedilol is administered as a racemic mixture of the R(+)- and S(-)-enantiomers, although it was demonstrated that the two enantiomers exhibit different pharmacological effects and stereoselective pharmacokinetics. The aim of this study was the evaluation of several native and derivatized cyclodextrines as chiral selectors for the separation of carvedilol enantiomers. Stereoselective interact...
متن کامل